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ABSTRACT

While ray optics is a valid model for many multimode optical systems, it cannot capture diffraction and interference
phenomena which may be required, for example, in calculating speckle propagation in multimode fiber.  Wave optics
includes the effect  of  interference  and diffraction, but it is usually much more costly computationally. We show how to
bridge the gap between ray and wave optics by using a position-angle ray phase space representation of the electric field. By
transporting a suitable quadratic functional of the field (the Wigner distribution) along rays, diffraction and interference are
taken into account for propagation through an arbitrary transverse index profile. We show how this method allows us to
propagate highly multimode fields without resorting to detailed mode calculations. We also illustrate the method by
calculating the mode selective loss for a multimode graded index waveguide.

1.  INTRODUCTION

Interest in multimode photonics systems is widespread and growing rapidly, motivated in part by ease of alignment and
large numerical apertures for light collection. Examples include computer backplane communications, local area networks,
and multimode interferometry.  The simulation of multimode systems presents additional challenges beyond those of the
single-mode case. First-principles propagation calculations can be costly except over very short distances because of the fine
zoning  required  to accommodate a large number (thousands) of modes, and the lack of knowledge of mode-coupling
perturbations. Furthermore, waveguide dispersion (absent in the single-mode case) must be assessed.  Ray tracing may be
able to give accurate results for energy transport but ignores phase: an accurate calculation of coupling efficiencies (e.g.
VCSEL to fiber) and mode-selective loss requires capturing the details of the multimode speckle pattern.  Radiation transport
approaches may also be used, but this requires calculating a large number of modes and eigenvalues through WKB or some
other method.

We demonstrate here the accurate  propagation of speckled optical fields, without resorting to detailed mode
calculations, by propagating rays in their position-angle phase space. By transporting a suitable quadratic functional of the
electric field (the Wigner distribution), diffraction and interference are taken into account for propagation through an arbitrary
transverse index profile. We can therefore  exploit the efficiency of ray propagation over full wave optics for highly
multimode systems, while retaining needed wave-optical physics. The method can be used to advantage in characterizing
multimode photonics propagation and phenomena such as mode-selective loss.

This paper is organized as follows. First, we will convey the principles of the phase space method and give some
simple examples. Then, we will describe the software tool we developed to study the propagation of fields through the
Wigner method. This tool allows us to study the important issue of the appropriate sampling of rays in the phase space to
achieve desired accuracy.  Further examples of light propagation in systems with a variety of axial and transverse refractive
index distributions will be given. We then show how the method can be applied to calculate modal noise in a multimode
graded-index waveguiding system. Finally, we will describe some of the limitations of our current scheme and the path we
envision for further development and applications.

2. BASIC FORMULATION

In this section we will develop some of the properties of the phase space formalism we will need, in an elementary way. We
usually think of an electric  field as a vector quantity which varies in space and time according to equations. We can also
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describe the field in terms of the wavenumbers or spatial frequencies which comprise it (Fourier representation).  However, it
is sometimes most natural to think in terms of a mixed representation, whereby the field is thought of as a set of spatial
frequencies, the spectrum of which changes with position. For the electric field, a wavenumber defines a direction in space;
the coordinates of the direction are a set of angles. Thus the field can be represented by a function of position and angle,
which defines the ray phase space.

One such function is known as the Wigner distribution, introduced by E. P.  Wigner in 19231. The Wigner
distribution allows quantum mechanical quantities to be calculated using a distribution function on a classical-like position-
momentum phase space, much as we will use it to calculate wave optical properties on a position-angle phase space.
Mathematically the Wigner transform can be thought of as a Fourier transform not of the field, but of its correlation function
relating the field at two space points:

W x,θ( ) = E ∗

−∞

∞

∫ x + s 2( )E x − s 2( ) exp −ikθx( )

where E is (one component of) the electric field, k is the vacuum wavenumber, and θ is the (paraxial) angle with respect to
the z axis.  The Wigner transform has been widely used to study not only the classical limit of quantum mechanics, but also
in paraxial optics and radiation transport2.  The usefulness of using the Wigner distribution lies in its evolution with z (for a
frequency-domain paraxial problem): under multimode conditions (kL >> 1 for scale length L) or weak variation of refractive
index, W(x,θ) is approximately conserved along rays:

W(x,θ; z) = W x0 x,θ ;z( ),θ0 x,θ;z( )( ) + O λ / L( )2[ ] ,

where the argument of W on the right hand side contains the initial conditions that lead to the phase space point (x,q) at a
distance z. Furthermore, the error term is also proportional to first derivatives of the refractive index, so the propagation is
exact for  parabolic profiles.

An example of a Wigner distribution is shown in Fig. 1. for a Gaussian field and for a uniformly illuminated
aperture.  The reason diffraction is included in the ray description is that at each point in space one has a fan of ray angles:
this is just a manifestation of the Fourier uncertainty principle. The Wigner distribution is not strictly a phase space density,
however, since it is not always positive.
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Figure 1. Wigner phase space distributions for a Gaussian field (top) and a uniformly illuminated aperture (bottom).

The Wigner propagation algorithm we have implemented works as follows. From an initial complex electric field
distribution, we calculate the Wigner transform. This distribution is then evolved in space by transporting it along rays, that



is, assuming conservation along a ray. As we have already indicated, this will be an excellent approximation if the index is
not too rapidly varying on a wavelength scale. If at every position in the ray phase space for the new (evolved) distribution,
we integrate over all ray angles, we obtain the intensity distribution as a function of spatial position (“nearfield”).
Conversely, if at each angle in phase space we integrate over position, we obtain the intensity distribution as a function of
ray angle (“farfield”). In practice this is usually accomplished by choosing a point or angle in the output plane and
backpropagating rays to build up the integral for the intensity distributions (see Figure 2). Since in paraxial wave optics the
nearfield and farfield amplitudes are related by Fourier transform, the complex electric field can be reconstructed (up to a
constant phase factor)  from the ray intensity distributions in position and angle.

x0

θ i

xi
x0 nearfield

farfield
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Figure 2. Illustration of the integration procedure to obtain the nearfield and farfield intensities. Rays are backpropagated
from the output plane and weighted with the value of the Wigner transform at the input plane.

As an example of a calculation using the Wigner propagation algorithm, we calculated the diffraction pattern from a
double slit (see Fig. 3). The Wigner function is calculated in the plane of the slits, then propagated along rays to the plane of
the screen. The calculated result and the exact solution are overlaid, and agreement is excellent. In fact, for free propagation,
the Wigner method is formally exact, and the only errors are due to sampling. This illustration shows strikingly that
diffraction and interference, usually considered outside the domain of ray optics, can be obtained through ray tracing the
Wigner distribution.
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Figure 3. Wigner phase space method calculation of double-slit diffraction by ray tracing.



3. THE PHASTER CODE

To study the Wigner method we developed a GUI-based code which allows us to propagate beams in a variety of media in
two spatial dimensions. We call the code PHASTER: Phase Space Techniques for Electromagnetics Research. PHASTER
allows us to set up an arbitrary initial beam consisting of a sum of Gaussians with selected widths and amplitudes.  After
computing and displaying the Wigner distribution for the beam, it will solve the ray equations for a set of points in the ray
phase space which sample the Wigner distribution in a prescribed manner. The rays are traced using an adaptive Runge-Kutta
method through a variety of refractive index distributions having both transverse and axial variation. After propagating the
prescribed set of rays to the exit plane, it will display the phase space distribution at the exit plane, as well as the x-space
and angle space intensities (nearfield and farfield). PHASTER gives useful insight into the dynamics of the rays in phase
space and their effect on the wave optical distribution.

Our first example of a PHASTER calculation is shown in Fig. 4. A Gaussian beam is shown propagating through
three “soft slabs”, i.e., small regions where the refractive index rises and falls, depicted in the central window of the GUI.
The contour plot on the left shows the initial Wigner distribution of the Gaussian. Below it we see the x-space intensity, and
to the left the angle-space intensity (farfield). The windows on the far right show the analogous data for the propagated
distribution. Note that the phase space distribution has become elongated and tilted: this is simply a graphic depiction of
diffraction. Rays at large magnitude angles (top and bottom of distribution) move fastest in x, while small angle rays (near
center of distribution) move little. The result is a spreading of the x-space distribution while the angular distribution does
not change, exactly what we would expect from simple free-space diffraction. Additional spreading in x-space occurs due to
the plates, but not in angle because rays receive no transverse impulse from the axially varying index.

Figure 4. PHASTER calculation of propagation through three slabs. The tilted distribution on the right is the manifestation
of diffraction  in the ray phase space.

In Figure 5 we show the PHASTER calculation of propagation in a waveguiding structure. The rays are obviously confined
to the waveguide, and at the exit have formed a galaxy-shaped distribution. A given ray will encircle the origin as it traces
out a periodic path, but the frequency of the rotation decreases as the angle increases, causing the spiraling.



Figure 5. PHASTER propagation in a waveguiding structure. The rays are obviously confined to the waveguide, and at the
exit have formed a galaxy-shaped distribution. A given ray will encircle the origin as it traces out a periodic path, but the
frequency of the rotation decreases as the angle increases, causing the spiraling.

Our final example, Fig. 6, shows the propagation of a speckled beam through a linearly graded-index structure. By
speckled we mean that we are launching a set of Gaussians with a distribution of transverse tilt angles and random phases.
The important observation here is that we can propagate a beam with a great deal of structure,  arising from the interference of
many plane waves, through ray propagation in phase space.

Figure 6. PHASTER calculation for a speckled beam at normal incidence on a linear index gradient

An important feature of the code is its flexibility in sampling the phase space at the entrance plane so as to put a
higher density of rays where the Wigner distribution has larger values. Sampling is critical for the method, because if we do
not sample wisely we suffer in computational efficiency for a given accuracy.  PHASTER allows us to divide the phase space
into rectangular bins and vary the size of the subdivisions of the bins.



4. APPLICATION: MULTIMODE WAVEGUIDE

In this section our goal will be to calculate the modal noise in a multimode waveguide by using the phase space dynamics of
rays. Consider a graded index slab waveguide with a refractive index profile given by
n2 x( ) = ncladding

2 + NA2sech2 x / a( ), where NA 2 = n core

2 − n cladding

2 . The ray trajectories in this case can be calculated

analytically. We launch a Gaussian field into this waveguide; the Wigner transform of this beam is also Gaussian.  In Fig. 7
we show the result of propagating this initial distribution. The phase space density twists about the origin, because the
period of oscillation decreases as the initial condition moves out from the origin. Since the evolution is Hamiltonian (no
gain or loss), the area (total number of rays)  conserved as it stretches. In Fig 8 we show the result of projecting this
distribution onto the spatial axis; this is the field intensity of a speckled beam, which shows spikes where the slope of the
twisting distribution diverges. These spikes are not caustic singularities, however, as the initial distribution is smooth and
so is its projection. Note that the rays for the propagated distribution are confined to the NA of the guide; rays outside have
been lost.
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Figure 7. A Gaussian beam in phase space is propagated 750 wavelengths; the distribution spirals about the origin. The rays
are confined to the waveguide NA = 0.05.
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Figure 8. The phase space distribution is projected onto the spatial axis to obtain the field intensity.



As the distribution propagates in z, the position and density of the intensity spikes moves. Because the local
intensity exhibits wide variation, the coupling of this waveguide to another waveguide which does not match its spatial
aperture and/or numerical aperture will also be z dependent. This is a phase space manifestation of modal noise. To calculate
the coupling  between waveguides in the phase space formulation, we integrate the Wigner distribution of the field over the
phase space of the receiving fiber, that is, over its spatial and angular aperture. If the receiving waveguide is tilted, we offset
the integration limits. Thus the coupling efficiency η  is given by

η Z( ) =
dx

x −

x +

∫ dθ W(x,θ;Z)
θ−

θ +

∫
W(x,θ; Z)

Γ
∫∫ )

,

where x ± = ±a /2 + x off
, θ ± = ±NAr +θ tilt

,   a is the width, xoff is the offset,  NAr is the NA and θtilt is the tilt of the

receiving waveguide. The integral in the denominator is over all of phase space (effectively over the aperture and NA of the
transmitting waveguide).

To calculate the modal noise, we can calculate the variance of η  as Z is varied. Explicitly, we sample η at discrete
locations along Z, starting at a distance Z0 that is many paraxial ray oscillation periods from z = 0. Thus,

σ 2 =
1

N j =1

N

∑ η Z 0 + j∆Z( ) − η ( )2

,

 where η = 1 N η Z
0

+ j∆Z( )
j =1

N

∑  and ∆Z is chosen such that ∆Z/λ >> 1.

In Fig. 8, we show the results of a calculation of  modal noise as a function of the NA of the waveguide. Here the
transmitting guide width is 100λ, and the  receiving waveguide width is 12.5λ. (The receiving waveguide width is chosen to
be small to emphasize the noise.) We see  that the noise decreases with NA, expected since the number of modes and hence
speckles increases with NA. We have also plotted in Fig 8 the results of a wave optics calculation using a finite-difference
Beam Propagation Method. We see that the phase space calculation agrees very well with the full wave optics code, showing
that by tracing rays we can in fact  accurately calculate modal noise.
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Figure 8. The variation of  modal noise with numerical aperture. Standard deviation σ of coupled power is plotted for phase
space method (empty markers) and using a finite-difference  BPM (filled markers).



5. SUMMARY

We have presented the phase space approach as a promising method for calculating propagation in multimode photonics
systems. The principal strength of the method lies in its ability to include diffraction and phase information in a ray tracing
calculation: the method requires calculating the Wigner function for an optical field and simply propagating it along the
geometrical ray paths. We have illustrated the method through the software  tool PHASTER, and shown how phase space
optics can be used to calculate accurately the modal noise in the coupling of multimode waveguides. Phase space methods
will be most useful in the highly multimode case, where tracing rays is much less costly than full wave optics calculations.
The method naturally has limitations: if  the refractive index varies too rapidly in space, the approximation of conservation
along a ray will not be well satisfied, although a higher-order method can be implemented. The method as we have presented
it is limited to scalar, frequency  domain paraxial optics, but these restrictions too can be relaxed. We have also limited our
examples to two spatial dimensions (transverse + axial); generalization to three dimensions is straightforward, but judicious
sampling in the phase space become more important. Finally, we should point out that the Wigner distribution, though
widely used, represents only one choice of a phase space distribution and other functionals may also be useful3.

We hope to have shown that a phase space picture of multimode photonics systems can be very useful in calculations, as
well as gaining insight into the dynamics of the optical field.
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